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Cylindrical phase of block copolymers: Stability of circular configuration
to elliptical distortions and thin film morphologies

G. G. Pereira
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 13 November 2000; published 29 May 2001!

We study the cylindrical phase of a diblock copolymer melt in the strong segregation limit, and initially
examine the stability of this morphology against elliptical perturbations. Surprisingly, we find that an elliptical
conformation of the columns has lower free energy than a circular one. The size of the ellipse’s eccentricity
depends onf, the minority block fraction. We proceed to examine the morphology of the melt when placed
between two hard, flat surfaces. The columns can either form with their axes in the plane of the bounding
surfaces~denoted parallel! or with their axes perpendicular to the bounding surfaces. We determine when the
parallel alignment is preferred over the perpendicular alignment.
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Diblock copolymers~DCP! are made up of two chemi
cally different polymer chains, denoted byA and B, joined
together end to end. The self-assembly of the diblocks
driven by the immiscibility of theA andB components lead
ing to microphase separation into a variety of morpholog
with characteristic size of order 1000 Å . Some typical mor-
phologies that form are lamellae, cylindrical, and spheri
phases@1#. Here we concentrate on the case of an asymm
ric DCP melt that forms a hexagonally packed cylindric
phase in the bulk. This has been shown to form~and seen
experimentally! at a fraction ofA monomers, denoted byf,
between 0.12 and 0.29@1#. We consider chains with degre
of polymerizationN and identical monomer sizea. This mor-
phology attempts to minimize the free energy of the syst
that is a sum ofAB interfacial energy and elastic stretchin
energy of the chains.

It has now been recognized that the nanoscale morph
gies produced by these self-assembling DCP melts ma
used as lithographic templates for producing patterns or
of magnitude smaller than at present. Such reduction
scales may have huge benefits in device miniaturization.
example, Ref.@2# has focused on aligning thin films of th
cylindrical phase of DCP melts with electric fields. There t
DCP melt is placed between two oppositely charged,
surfaces and the electric field enhances the columns to o
perpendicularly to the surfaces. Our work is, in part, mo
vated by such experiments but we focus on a more fun
mental problem: the equilibrium, thin film morphology with
out external fields. The system becomes strained whe
thickness is imposed on the film and together with the s
face interfacial tension effects can deform the circular cr
section of the columns.

There has been some theoretical work on thin films of
cylindrical phase of DCP melts@3–6#. However, they have
concentrated mainly on the scenario where the surface
ergy favors one phase sufficiently, such that the cylindri
morphology is destroyed adjacent to the bounding surfa
Instead a lamellar morphology forms there. Here we cons
a slightly different scenario: the columnar morphology
mains, but is allowed to be distorted. According to Turneret
al @4# this may occur when 0,gSB2gSA,gAB wheregAB is
the AB interfacial tension andgSB is the surface-B phase
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interfacial tension, etc. We assume here theA ~inner core!
phase is preferred at the surface, so that the cylinders w
prefer to align with their axis in the plane of the boundin
surfaces~called parallel alignment from now on!. This can be
seen from Fig. 1 if one notes that in a parallel alignment
fraction of the surface covered byA monomers is
(2A3/p)1/2Af while in perpendicular alignment it is onlyf.
For example, at anf of 0.25 this implies in parallel alignmen
the fraction of the surface covered byA monomers is 0.52
while in perpendicular alignment it is only 0.25.

There is another motivation for our study. The se
assembled morphologies that form are, mathematica
minimal surfaces. They represent the minimal surface a
for a given volume and so minimize theAB interfacial part
of the free energy. However, it is not clear that the stretch
energy is also minimized. In fact, what is done theoretica
is that a number of possible structures is assumed, comm
the minimal surfaces such as spheres, columns and lame
and one compares the free energy of these phases to d
mine which one is actually observed. Therefore we test
stability of the circular cross section of the columnar pha
to elliptical perturbations. Rather interestingly we find
elliptical cross section is slightly more stable than a circu
cross section. In turn this leads to an asymmetric beha

FIG. 1. Schematic of hexagonal phase showing columns~shaded
circle of radiushA) and matrix, with some ‘‘typical’’ chains. Dots
represent the point whereA andB chains are tethered together.~a!
Perpendicular alignment~bounding surface in plane of paper!. ~b!
Top half of the Wigner-Seitz cell on which our calculations a
based.~Bottom half is mirror image of top half.! It consists of a
hexagon ~which can be deformed!. The semimajor axis
length of the ellipse~shaded area! is hx , while the semiminor axis
length ishy .
©2001 The American Physical Society09-1
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depending on whether the system is expanded or compre
in the thin-film geometry.

We shall consider the strong segregation limit~SSL!,
where the interface betweenA andB regions is well defined
and narrow and thus use Semenov’s theory@7#. Although
this theory has some well-known deficiencies, such as
exclusion zone that yields an underestimate of the free
ergy, it has one major advantage over other more accu
self-consistent field theories~SCFT! @8#. It allows us to pick
any general shape for theAB interface, whereas the mor
accurate theories are currently limited to circularly symm
ric structures. We shall discuss the validity of the results
the context of the approximations later. If we are deep in
SSL, i.e.,gAB is large, then Turner’s condition implies tha
the elliptic distortion considered here may occur for qu
large surface interfacial tensions.

Let us consider first how to determine the minimum fr
energy of a bulk sample of this phase. This phase consis
columns of theA phase~minority phase! in a matrix of theB
phase~majority phase!. The discussion is based on arg
ments put forward by Semenov@7# and Likhtman and Se
meron@9#. The elastic energy of the inner and outer doma
of diblock chains, i.e., chains in theA andB regions, is given
by

Fel,i5kBT
p2

16

1

Ni
2a2v

E
[ i ]

s2~r !d3r , ~1!

wherei can be eitherA or B, v the monomer volume, andNi
the number of monomers in thei th block. Heres(r ) is de-
fined as the shortest distance from a given point to the n
est interface and the integration is performed over the v
ume of the i th domain. Figure 1~a! represents the bulk
circular symmetric case.

The elastic energy of the chains in the inner~A! domain
~per chain! is quite simple: the limit of the cylindrical part o
the integral in Eq.~1! is hA , thus Fel,A5kBTaAhA

2/(Na2)
with aA5p2/(96f ). The outer block’s elastic energy is mo
tedious to calculate, since the domain of theB blocks does
not have circular symmetry. To compute the outer doma
elastic energy one requiresL in terms ofhA . This is obtained
by using the volume constraint ofA andB domains. Doing
this one findsL5@2p/(3A3 f )#1/2hA . After some algebra
one can show that the elastic energy of theB domain ~per
chain! is Fel,B5kBTaBhA

2/(Na2), where

aB5
p2

16f ~12 f !2
F 5p

18A3
2

4

3
AA3p f

2
S 1

3
1

1

4
ln 3D 1 f

2
f 2

6
G . ~2!

The interfacial AB energy ~per chain! is simply FAB
52 f NvgAB /hA , wheregAB is the AB interfacial tension.
The total energy isF5FAB1Fel,A1Fel,B , which is mini-
06180
ed

e
n-
te

-
n
e

of

s

r-
l-

’s

mized with respect tohA to obtain the optimal radius of the
columns. Carrying out the minimization yields the optim
radius

hA* 5~gABa2/kBT!1/3N2/3v1/3@ f /~aA1aB!#1/3 ~3!

and the corresponding minimum free energy is

F* 53kBT~v1/3/a!2N1/3~gABa2/kBT!2/3f 2/3~aA1aB!1/3.
~4!

The equilibrium center-to-center separation between c
umns,D0, is D05(2p/A3 f )1/2hA* .

The above analysis has been carried out under the
sumption that the cross section of the columns is circular
so the hexagon has six equal sides. We now relax this
sumption and allow for the possibility of an anisotrop
shape, see Fig. 1~b!, with columns of elliptic cross section
Thus we havehxÞhy and so we define the eccentricity of th
ellipse ase5A12(hy /hx)

2, where the ellipse is extended i
the x direction ~or the top corner of the hexagon!, see Fig.
1~b!. We argue that the ellipse semimajor axis can only po
in the direction of the hexagon’s corner. The lengthstx and
ty , shown in Fig. 1~b!, are related tohx and hy by
hx53tx(2 f /A3p)1/2 and hy5ty(A3 f /2p)1/2. The distance
from the center of the ellipse to the perimeter becomes an
dependent and is given by

hA~e2,u!5hx~12e2!1/2~12e2 cos2 u!21/2,

where 0,u,p/2. ~5!

We consider first the interfacialAB energy, which is essen
tially determined by evaluating the perimeter of an ellips
The perimeter of the ellipse is just 4hx(12e2)1/2E„e2/(e2

21)…, whereE is an elliptic integral of the second kind. Th
area of the ellipse isphx

2(12e2)1/2 and so the interfacia
(AB) free energy~per chain! is

FAB5
2F*

3 ShA*

hx
D2

p
E„e2/~e221!…. ~6!

The elastic stretching energy is more complicated to ca
late than in the circular case because one must find a suit
minimal distance between the point to theAB interface. Let
us consider some point with coordinates (r ,u). The distance
from this point to any point on theAB interface is given by
s2(r )5r 21hA

2(e2,f)22rhA(e2,f)cos(f2u). This distance
must be minimized with respect tof, to give asmin

2 (r ,u).
This is then substituted into Eq.~1! and integrated. This re
sults in elastic energies of

Fel,i5
F*

3 S a i

aA1aB
D S hx

hA*
D 2

I el,i , ~7!

wherei is either theA or B domain. The important quantitie
are the integralsI el,i . I el,A is given by

I el,A5
24

p
~12e2!21/2E

0

p/2

duE
0

t

dttzmin
2 ~t,u,e2!. ~8!
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I el,B is given by

I el,B5
p f ~12e2!21/2

4~12 f !2aB
F E

0

c

duE
t

h
dttzmin

2 ~t,u,e2!

1E
c

p/2

duE
t

A12e2r t /sin u
dttzmin

2 ~t,u,e2!G , ~9!

where

c5p/22arctan@1/A3~12e2!#,

r t5~p/2A3 f !1/2,

t5@~12e2!/~12e2 cos2 u!#1/2,

h5~2r t /A3!@sinu/$A3~12e2!%1cosu#21,

zmin
2 ~t,u,e2!5t222t cos~f02u!

~12e2!1/2

~12e2 cos2 f0!1/2

1
~12e2!

~12e2 cos2 f0!
~10!

andf0(t,u,e2) is the optimal value off that minimizesz2.
Note that the integralsI el,A and I el,B are just functions ofe.
The energy, per chain, is thenF5FAB1Fel,A1Fel,B . For
given hx , F must be minimized overe to obtain the mini-
mum free energy and hence the optimal relaxation in
orthogonal direction.

Figure 2 shows the scaled free energyF/F* as a function
of l[hx /hA* . At l51, the optimal state ishx5hy5hA* with
a free energyF* , which is Semenov’s result@9#. The results
are shown for threeA monomer fractions,f 50.12, 0.18, and
0.25. There are a number of very interesting features ab
the free energy plots. Firstly, the minima are not atl51, but
at l511ex( f ) with ex(0.25)'0.20, ex(0.18)'0.12, and
ex(0.12)'0.06. In turn, the center-to-center column spac
in the x andy directions, which in the pure circular case a
related by D0x /A35D0y5D0, become D0x5A3D0@1
1ex( f )# and D0y5D0@12ey( f )#, where ey(0.25)'0.13,

FIG. 2. Free energy of DCP melt as a function ofl for
f 50.25~solid line!, f 50.18~dotted line! and f 50.12~dashed line!.
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e

ut

g

ey(0.18)'0.09 andey(0.12)'0.05. Thus the elliptic con-
figuration is actually a lower energy state than the circu
configuration. In general we write the free energy
Fmin( f )5@12d( f )#F* and sod(0.25)'0.003 22,d(0.18)
'0.001 25, andd(0.12)'0.000 19. It can be seen that fo
larger f the cross section is more eccentric. This is read
explained since for largef the system tends to become mo
elongated~goes to a lamella structure! while for small f it
becomes more circular~goes to a spherical structure!. Figure
2 implies that the circular cross section is unstable to el
tical perturbations. However, because of the approximate
ture of Semenov’s theory and the small differences betw
the circular and elliptic conformations, further, more acc
rate calculations such as SCFT@8# or advanced SSL@9# need
to be carried out to confirm the result.

We now proceed to determine the thin-film morpholo
of this DCP melt. The additional free energy term is a s
face energy contribution due to the presence of bound
surfaces. In parallel alignment of the columns, the colu
axes are considered to align with thez axis, while in perpen-
dicular alignment the column axes align with thex axis. The
surfaces that bound the sample are in they-z plane, orthogo-
nal to thex axis. There are two possible orientations in pa
allel alignment, see Fig. 3, where in~a! the film is stretched,
denotedis from now on, while in~b! it is compressed, de
notedic . We consider thin films in a rectangular space, i.
D units in thex direction,Ly units in they direction andLz
units in thez direction. We assume that the ellipses adjac
to the surfaces have the same shape and dimensions as
in the interior. In this way any strain is shared equally b
tween the layers as the film thickness is varied, in analo
with thin-film lamella problems@10#. Half ellipses must form
adjacent to the surfaces, so that the chain trajectories are
impeded by the surfaces and consequently the hexag
structure is not lost.

In the is case,tx52D/(3r) where r is the number of

FIG. 3. Free energy difference plotted as a function of sca
film thicknessd[D/(D0x/2) for Dg[(gSB2gSA)/gAB50.15 and
f 50.25. Dashed curves areic , while solid curves are theis . The
numbers relate to the number of layers. First order transitions o
at intersection of curves. In the inset we show schematically~a! the
is2 orientation while in~b! the ic2 orientation.
9-3
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G. G. PEREIRA PHYSICAL REVIEW E 63 061809
layers in thex direction, r52,4,6, . . . . In the ic case the
number of layers may be even or odd so thatty52D/r
where r51,2,3, . . . . Since the ratioshy /ty and hx /tx
are constants, the surface energies do not change wh
deformation occurs as one would expect since volume m
be conserved. To determine the surface energies we m
simply determine the difference in the fraction ofA mono-
mers at the surface between the two alignments. The sur
energy difference~per chain! between the various align
ments areFsur f,is

2Fsur f,'522(Nv/D)@(2A3 f /p)1/22 f #

3(gSB2gSA),0 and Fsur f,ic
2Fsur f,'522(Nv/D)

3@(2 f /A3p)1/22 f #(gSB2gSA),0. Since we assumegSB
2gSA.0, the is state will be preferred to theic state on
surface energy considerations. The free energy difference
tweenis and' states (DF1) and ic and' states (DF2) are
now obtained by adding the bulk energy term,F ~outlined
above!, which is now dependent on the film thickness,D. If
the is ~or ic) state is compressed belowD0x/2 ~expanded
aboveD0y/2), we assume that the Wigner-Seitz cell co
presses~expands! uniformly in all directions.

The free energy difference between the parallel and p
pendicular alignments is shown in Fig. 3 forf 50.25 and
Dg[(gSB2gSA)/gAB50.15. When DFi,0 (i 51,2) the
parallel states are observed and when the converse is tru
perpendicular state is observed. The surface term scales
D21 and so its effect is most significant for thin films, as o
would expect. The free energy has the characteristic ‘‘d
crete’’ shape for a layered system@10#. Minima are slightly
shifted off integer values due to the surface contribution. T
is state is seen predominantly, since this state has the m
favorable surface energy contribution. Theic is seen at rela-
tively thin films, while for the thinnest films the system
reverts to a perpendicular configuration, as expected. N
that only the oddic states are seen. The evenic states have
em

ol
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their minima close to theis state minima but because of th
unfavorable surface energy contribution for this orientatio
in comparison tois , the is state is preferred. Qualitatively
these columnar systems behave analogously to lamellar
tems @10#, with transitions from n to n11 layers
(n51,2, . . . ) as the filmthickness increases. Kinks in th
free energy curves are due to the columnar cross sect
changing from circular to elliptical configurations.

In conclusion we have, for the first time, considered t
stability of the circular cross section of the hexagonal ph
of an asymmetrical DCP melt in the SSL. Although o
theory is approximate, it shows that this configuration is u
stable to small elliptical perturbations. Further, more ac
rate SSL theories@9#, will be applied to confirm the result
As well, we hope this work will stimulate SCFT@8# calcu-
lations for this configuration. It has been seen for largef that
the elliptical distortion can be quite large, up toe2'0.48,
however, the energy well of this minima is quite shallow a
broad. As such, it might be that thermal fluctuations co
mask a clear observation of the distortion. The physics
hind the elliptic distortion is apparent—although the surfa
tension favors a minimal surface~i.e., circular cross section!
the elastic stretching term favors an elongated structure
the best compromise is an elliptic distortion. We have a
calculated the thin-film morphology in the case whe
0,Dg,1. The thin-film analysis is not as delicate as t
stability analysis, since it can be readily shown that wh
strain is imposed on these thin films an elliptical morpholo
has a significantly lower free energy than a circular one.
have found that as the film thickness varies, the cross
tions of the columns become increasingly elliptical.

I acknowledge useful discussions and clarifications w
M. Warner and A. N. Semenov, and support from t
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