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Cylindrical phase of block copolymers: Stability of circular configuration
to elliptical distortions and thin film morphologies

G. G. Pereira
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom
(Received 13 November 2000; published 29 May 2001

We study the cylindrical phase of a diblock copolymer melt in the strong segregation limit, and initially
examine the stability of this morphology against elliptical perturbations. Surprisingly, we find that an elliptical
conformation of the columns has lower free energy than a circular one. The size of the ellipse’s eccentricity
depends orf, the minority block fraction. We proceed to examine the morphology of the melt when placed
between two hard, flat surfaces. The columns can either form with their axes in the plane of the bounding
surfaceqdenoted parallglor with their axes perpendicular to the bounding surfaces. We determine when the
parallel alignment is preferred over the perpendicular alignment.

DOI: 10.1103/PhysReVvE.63.061809 PACS nunider61.41+e, 68.03.Cd, 68.66-p

Diblock copolymers(DCP) are made up of two chemi- interfacial tension, etc. We assume here &énner core
cally different polymer chains, denoted ByandB, joined phase is preferred at the surface, so that the cylinders would
together end to end. The self-assembly of the diblocks iprefer to align with their axis in the plane of the bounding
driven by the immiscibility of theA andB components lead- surfacegcalled parallel alignment from now @nThis can be
ing to microphase separation into a variety of morphologieseen from Fig. 1 if one notes that in a parallel alignment the
with characteristic size of order 10 . Some typical mor- fraction of the surface covered byA monomers is
phologies that form are lamellae, cylindrical, and spherica(2./3/7)Y2/f while in perpendicular alignment it is only
phaseg1]. Here we concentrate on the case of an asymmetFor example, at ahof 0.25 this implies in parallel alignment
ric DCP melt that forms a hexagonally packed cylindricalthe fraction of the surface covered Bymonomers is 0.52
phase in the bulk. This has been shown to fdand seen while in perpendicular alignment it is only 0.25.
experimentally at a fraction ofA monomers, denoted by There is another motivation for our study. The self-
between 0.12 and 0.24]. We consider chains with degree assembled morphologies that form are, mathematically,
of polymerizationN and identical monomer size This mor-  minimal surfaces. They represent the minimal surface area
phology attempts to minimize the free energy of the systenfor a given volume and so minimize t#eB interfacial part
that is a sum ofAB interfacial energy and elastic stretching of the free energy. However, it is not clear that the stretching
energy of the chains. energy is also minimized. In fact, what is done theoretically

It has now been recognized that the nanoscale morpholas that a number of possible structures is assumed, commonly
gies produced by these self-assembling DCP melts may bae minimal surfaces such as spheres, columns and lamellae,
used as lithographic templates for producing patterns ordersnd one compares the free energy of these phases to deter-
of magnitude smaller than at present. Such reduction imine which one is actually observed. Therefore we test the
scales may have huge benefits in device miniaturization. Fagtability of the circular cross section of the columnar phase
example, Ref[2] has focused on aligning thin films of the to elliptical perturbations. Rather interestingly we find an
cylindrical phase of DCP melts with electric fields. There theelliptical cross section is slightly more stable than a circular
DCP melt is placed between two oppositely charged, flatross section. In turn this leads to an asymmetric behavior
surfaces and the electric field enhances the columns to orient
perpendicularly to the surfaces. Our work is, in part, moti-
vated by such experiments but we focus on a more funda-
mental problem: the equilibrium, thin film morphology with-
out external fields. The system becomes strained when a
thickness is imposed on the film and together with the sur-
face interfacial tension effects can deform the circular cross
section of the columns.

There has been some theoretical work on thin films of the
cylindrical phase of DCP melts3—6]. However, they have FIG. 1. Schematic of hexagonal phase showing colufshaded
concentrated mainly on the scenario where the surface eRycie of radiush,) and matrix, with some “typical” chains. Dots
ergy favors one phase sufficiently, such that the cylindricalepresent the point wher andB chains are tethered togethéa)
morphology is destroyed adjacent to the bounding surfaceserpendicular alignmertbounding surface in plane of papefb)
Instead a lamellar morphology forms there. Here we considetop half of the Wigner-Seitz cell on which our calculations are
a slightly different scenario: the columnar morphology re-based.(Bottom half is mirror image of top half.t consists of a
mains, but is allowed to be distorted. According to Tureer hexagon (which can be deform@d The semimajor axis
al [4] this may occur when € ysg— vsa< yag Whereyagis  length of the ellipséshaded areas h,, while the semiminor axis
the AB interfacial tension andysg is the surface8 phase length ish, .
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depending on whether the system is expanded or compressedzed with respect td, to obtain the optimal radius of the

in the thin-film geometry. columns. Carrying out the minimization yields the optimal
We shall consider the strong segregation liffSL), radius

where the interface betweénandB regions is well defined

and narrow and thus use Semenov’s theff}; Although

this theory has some well-known deficiencies, such as the . . .

exclusion zone that yields an underestimate of the free erfd the corresponding minimum free energy is

ergy, it has one major advantage over other more accurate -« _ 131 4\ 2\ /3 2 2/3¢2/3 13

self-consistent field theorigSCFT) [8]. It allows us to pick P =3keT(va)" N yapa ke )™ ant ap) '(4)

any general shape for th&B interface, whereas the more

accurate theories are currently limited to circularly symmet-The equilibrium center-to-center separation between col-

ric structures. We shall discuss the validity of the results inumns,Dy, is Do= (27/3f) %% .

the context of the approximations later. If we are deep in the The above analysis has been carried out under the as-

SSL, i.e.,yag is large, then Turner’s condition implies that sumption that the cross section of the columns is circular and

the elliptic distortion considered here may occur for quiteso the hexagon has six equal sides. We now relax this as-

ha=(7asa% ke T) N0 Y f(apt @)1 (3)

large surface interfacial tensions.

sumption and allow for the possibility of an anisotropic

Let us consider first how to determine the minimum freeshape, see Fig.(th), with columns of elliptic cross section.
energy of a bulk sample of this phase. This phase consists gfhus we havé, # h, and so we define the eccentricity of the

columns of theA phaseminority phasgin a matrix of theB

ellipse ase=+1— (hy/hx)z, where the ellipse is extended in

phase(majority phasg The discussion is based on argu- the x direction (or the top corner of the hexagprsee Fig.

ments put forward by Semendv] and Likhtman and Se-

1(b). We argue that the ellipse semimajor axis can only point

meron[9]. The elastic energy of the inner and outer domainsn, the direction of the hexagon’s corner. The lengthsind

of diblock chains, i.e., chains in tieeandB regions, is given
by

2

Fo kT T J 2(r)d® 1)
i=kgT—= ———| s%(n)d°r,
e 7816 N2a2y Jpi)

wherei can be eitheA or B, v the monomer volume, any;
the number of monomers in théh block. Heres(r) is de-

fined as the shortest distance from a given point to the nea
est interface and the integration is performed over the vol
ume of theith domain. Figure (g represents the bulk,

circular symmetric case.

The elastic energy of the chains in the intd) domain
(per chain is quite simple: the limit of the cylindrical part o
the integral in Eq.(1) is ha, thus Fe,,A:kBTaAhf\/(Naz)

with ax= 72/ (96f). The outer block’s elastic energy is more

tedious to calculate, since the domain of Bdlocks does

not have circular symmetry. To compute the outer domain’

elastic energy one requirésn terms ofh, . This is obtained
by using the volume constraint & and B domains. Doing
this one findsL=[2#/(33f)]Y?h,. After some algebra
one can show that the elastic energy of Bi@omain (per
chain is F¢ g=kgTagha/(Na?), where

2 5 4 /\/gwf
a = —_—— —
® 1ef(1-1)2|18y3 3 ¥V 2
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3 4
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The interfacial AB energy (per chain is simply Fag
=2fNv yag/ha, Where y,p is the AB interfacial tension.
The total energy iF=F g+ Fg at+Fe g, Which is mini-

t,, shown in Fig. 1b), are related toh, and h, by
h,=3t,(2f/\37)¥? and h,=t,(/3f/27)¥2 The distance
from the center of the ellipse to the perimeter becomes angle
dependent and is given by

ha(€?,6)=hy(1-e*)"q1-e’cos §) 12,

where 0<0<m/2. (5)

We consider first the interfaci@B energy, which is essen-
{i_ally determined by evaluating the perimeter of an ellipse.
The perimeter of the ellipse is justhg(1—e?)Y?E(e?/(e?
—1)), whereE is an elliptic integral of the second kind. The
area of the ellipse isthZ(1—e?)? and so the interfacial

¢ (AB) free energy(per chain is

2F* (3|2
Fra= T e 1) ©

*The elastic stretching energy is more complicated to calcu-

late than in the circular case because one must find a suitable
minimal distance between the point to tA® interface. Let

us consider some point with coordinatesf). The distance
from this point to any point on thAB interface is given by
s2(r)=r?+hi(€? ¢) —2rh (€%, ¢)cos@—6). This distance
must be minimized with respect @, to give asrznin(r,e).

This is then substituted into E¢Ll) and integrated. This re-
sults in elastic energies of

F*
3

a;

Feli= (7)

aA+ apg

h, 2
e lelis
A

wherei is either theA or B domain. The important quantities
are the integral$g . l¢ A is given by

24 21 [ ™2 ! 2 2
|e|’A=?(1—e ) fo dﬁfodﬂ'{min(r,ﬁ,e ). (8)
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FIG. 2. Free energy of DCP melt as a function »f for
f=0.25(solid line), f =0.18(dotted ling andf =0.12(dashed ling

le1 5 iS given by

f(1—e?) Y2 (v
u f dgfndTTgfnin(T,ﬁ,ez)
0 t

BT 41— )2ag
N f:lzdﬁftVWrt/SinadTTgfmn(7', 9,62) , (9)
where
= ml2—arctaf1/y3(1—e?)],
re=(m/2y31)",
t=[(1-e?)/(1—e’co §)]*2
n=(2r/\3)[sin6/{\/3(1—€?)} +cosb] L,
(1_e2)1/2
(oin(7,0,6%) =172 —27COq by — 0)(1—e2 o2 6o 2
a2
(1—e9) (10

- (1—€? cos ¢o)

and ¢o( 7, 6,e?) is the optimal value ofp that minimizesz?.
Note that the integralk, o andlg g are just functions oé.
The energy, per chain, is theA=F g+ Fg¢ o+ Fe . FoOr
given h,, F must be minimized ovee to obtain the mini-
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FIG. 3. Free energy difference plotted as a function of scaled
film thicknessd=D/(D,/2) for A y=(ysg— vsa)/vag=0.15 and
f=0.25. Dashed curves alig, while solid curves are thls,. The
numbers relate to the number of layers. First order transitions occur
at intersection of curves. In the inset we show schematicallthe
|, orientation while in(b) the||., orientation.

€,(0.18)~0.09 ande,(0.12)~0.05. Thus the elliptic con-
figuration is actually a lower energy state than the circular
configuration. In general we write the free energy as
Fmin(f)=[1—-6(f)]F* and s06(0.25)~0.003 22, 5(0.18)
~0.001 25, and5(0.12)=0.00019. It can be seen that for
larger f the cross section is more eccentric. This is readily
explained since for largethe system tends to become more
elongated(goes to a lamella structuravhile for smallf it
becomes more circuldgoes to a spherical structyréigure

2 implies that the circular cross section is unstable to ellip-
tical perturbations. However, because of the approximate na-
ture of Semenov’s theory and the small differences between
the circular and elliptic conformations, further, more accu-
rate calculations such as SCH] or advanced SS[9] need

to be carried out to confirm the result.

We now proceed to determine the thin-film morphology
of this DCP melt. The additional free energy term is a sur-
face energy contribution due to the presence of bounding
surfaces. In parallel alignment of the columns, the column
axes are considered to align with thexis, while in perpen-
dicular alignment the column axes align with thexis. The
surfaces that bound the sample are inytkeplane, orthogo-
nal to thex axis. There are two possible orientations in par-

mum free energy and hence the optimal relaxation in theye| alignment, see Fig. 3, where (&) the film is stretched,

orthogonal direction.

Figure 2 shows the scaled free enerfF* as a function
of A=h,/h} . At A\=1, the optimal state is,=h,=hx with
a free energy*, which is Semenov’s resul®]. The results
are shown for threéd monomer fractionsf =0.12, 0.18, and

denoted|s from now on, while in(b) it is compressed, de-
noted||.. We consider thin films in a rectangular space, i.e.,
D units in thex direction, L units in they direction andL,
units in thez direction. We assume that the ellipses adjacent
to the surfaces have the same shape and dimensions as those

0.25. There are a number of very interesting features aboui the interior. In this way any strain is shared equally be-

the free energy plots. Firstly, the minima are nokat1, but
at A=1+¢€,(f) with €,(0.25)~0.20, ¢,(0.18)~0.12, and

tween the layers as the film thickness is varied, in analogy
with thin-film lamella problem$10]. Half ellipses must form

€,(0.12)~0.06. In turn, the center-to-center column spacingadjacent to the surfaces, so that the chain trajectories are not
in the x andy directions, which in the pure circular case areimpeded by the surfaces and consequently the hexagonal

related by Doy/y3=Dgy=Dy, become Dg,=+3Dg[1
+&(f)] and Doy=Dgo[1—€,(f)], where €,(0.25)~0.13,

structure is not lost.
In the ||s case,t,=2D/(3p) wherep is the number of
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layers in thex direction, p=2,4,6 ... . In the|. case the their minima close to thé, state minima but because of the
number of layers may be even or odd so that2D/p unfavorable surface energy contribution for this orientation,
where p=1,2,3, ... . Since the ratio&,/t, and h,/t, in comparison td|s, the|s state is preferred. Qualitatively,

are constants, the surface energies do not change whentigese columnar systems behave analogously to lamellar sys-
deformation occurs as one would expect since volume musems [10], with transitions from n to n+1 layers

be conserved. To determine the surface energies we mugh=1,2,...) as the filmhickness increases. Kinks in the
simply determine the difference in the fraction A&fmono-  free energy curves are due to the columnar cross sections
mers at the surface between the two alignments. The surfagganging from circular to elliptical configurations.

energy difference(per chain between the various align-  In conclusion we have, for the first time, considered the
ments areFgy, | .~ Fsurty = —2(Nv/D)[(23f/7) 2] stability of the circular cross section of the hexagonal phase
X(yse~¥sW<0 and Fgyrq) —Fsuri.=—2(Nv/D) of an asymmetrical DCP melt in the SSL. Although our

. theory is approximate, it shows that this configuration is un-
X[(2f/\37)Y2—f](ysg— ysn) <0. Since we assumesg h» .
— yex>0, the | state will be preferred to thg, state on stable to small elliptical perturbations. Further, more accu-

surface energy considerations. The free energy difference bg:flste SSL theoried], will be applied to confirm the result.

I, we hope this work will stimulate SCHRB] calcu-
tween|s andL states AF;) and|; andL states AF,) are  \We . : :
now obtained by adding the bulk energy tersi,(outlined lations for this configuration. It has been seen for largeat

above, which is now dependent on the film thickneBs, If Lhe e"'pt'cﬁl distortion lemf bﬁ qu|.te. Iarge, up &:%'48’ d
the |, (or o) state is compressed belol,/2 (expanded TE4/E T SIGEN LR PR B CTE D (e one could
aboveDo,/2), we assume that the Wigner-Seitz cell com- " cjoa ot,)servagtion of the distortion. The physics be-
pressegexpands uniformly in all directions. ' pny

The free energy difference between the parallel and per}-"nd.the elliptic d|s.to.rt|on IS app_arent_—although the syrface
. . ; LT tension favors a minimal surfacee., circular cross section
pendicular alignments is shown in Fig. 3 fo=0.25 and

Ay=(ysa— e yas=0.15. WhenAF,<0 (i=1,2) the the elastic stretching term favors an elongated structure and

. he best compromise is an elliptic distortion. We have also

parallel states are observed and when the converse is true the S :
; ; .cdlculated the thin-film morphology in the case where
perpendicular state is observed. The surface term scales |Ilbe

D! and so its effect is most significant for thin films, as one <Ay<1. The thin-film analysis is not as delicate as the

would expect. The free energy has the characteristic “dis—Stablllty analysis, since it can be readily shown that when

crete” shape for a layered systdi0]. Minima are slightly strain is imposed on these thin films an elliptical morphology

shifted off integer values due to the surface contribution. Th%ha\s/ea f?)ll?:gltt:r?gtﬂ)z/aéomir f];ﬁe tﬁ?cirr?gstsh?/g r?eglr(t:ﬁlearc?onses' \s/\éec-

|s state is seen predominantly, since this state has the MOSL s of the columns become increasingly elliptical
favorable surface energy contribution. Theis seen at rela- y '

tively thin films, while for the thinnest films the systems | acknowledge useful discussions and clarifications with
reverts to a perpendicular configuration, as expected. Not®l. Warner and A. N. Semenov, and support from the
that only the odd|. states are seen. The evignstates have EPSRC.
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